Question 1

Not yet answered

Marked out of

♥ Flag

question

Let y(t) be the solution of the initial value problem xy'-y=1, y(1)=2, then y(2)=

Select one:

- \bigcirc 3
- \bigcirc 0
- \bigcirc 2
- 5

Clear my choice

Question 2

Not yet answered

Marked out of

 The solution of the I.V.P. $y'=2xy^2+3x^2y^2$, $y\left(\frac{-1}{2}\right)=-8$ is defined on the interval

Select one:

- \bigcirc $(0,\infty)$
- (0,1)
- \circ $(-1,\infty)$
- (-1,0)

Question 3

Not yet answered

Marked out of

♥ Flag

question

The solution of the integral equation

$$\phi(t)-\int_0^t e^{-(t- au)}\phi(au)d au=1$$
 is

Select one:

$$\bigcirc \phi(t) = 1 - e^t$$

$$\bigcirc \ \phi(t) = t - e^t$$

$$\bigcirc \phi(t) = 1 - t$$

Clear my choice

Question 4

Not yet answered

Marked out of

♥ Flag
question

The I.V.P. $\ln(t-1)y'+\frac{1}{t-1}y=\csc t$, y(3)=1 is certain to have a solution in the interval

Select one:

- (0,3)
- \bigcirc $(0,\pi)$
- \bigcirc $(1,\pi)$
- \circ $(2,\pi)$

🛐 Final Exam-Part 1 (page 3 of 12) - Google Chrome

à itc.birzeit.edu/mod/quiz/attempt.php?attempt=436247&cmid=180672&page=2

Question **5**

Not yet answered

Marked out of

 The general solution of the differential equation 2y''-y'-y=0 is

Select one:

$$y(t) = c_1 e^{-t/2} + c_2 e^{-t}$$

$$y(t) = c_1 e^{t/2} + c_2 e^t$$

$$y(t) = c_1 e^{t/2} + c_2 e^{-t}$$

Clear my choice

Question 6

Not yet answered

Marked out of

⟨ Flag
 question

Let y_1 and y_2 be two solutions of the differential equation $t^2y''-(2t+t^2)y'+y=0$, and $W(y_1,y_2)(1)=e$, then $W(y_1,y_2)(\ln 2)=$

Select one:

- $\bigcirc \ln 2$
- \circ 2(ln 2)²
- $\bigcirc 2 \ln 2$
- $\bigcirc (\ln 2)^2$

Question **7**

Not yet answered

Marked out of

♥ Flag question A lower bound for the radius of convergence of series solution of the differential equation

$$(x^2-2x+2)y''+xy'+y=0$$
 near $x_0=-rac{1}{2}$ is

Select one:

- $\bigcirc \frac{\sqrt{5}}{2}$
- $\sqrt{5}$
- $\sqrt{2}$

Clear my choice

Question 8

Not yet answered

Marked out of

♥ Flag question A solution of the system $\mathbf{x}' = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \mathbf{x}$ is

Select one:

$$\bigcirc \mathbf{x}(t) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^t$$

$$\bullet \ \mathbf{x}(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$$

$$\bigcirc \ \mathbf{x}(t) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^t$$

🛐 Final Exam-Part 1 (page 4 of 12) - Google Chrome

à itc.birzeit.edu/mod/quiz/attempt.php?attempt=436247&cmid=180672&page=3

♥ Flag
question

- Select one:
- $\bigcirc \ \ \frac{\sqrt{5}}{2}$
- $\bigcirc \sqrt{5}$
- $\sqrt{2}$

Clear my choice

Question 8

Not yet answered

Marked out of

 A solution of the system $\mathbf{x}' = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \mathbf{x}$ is

Select one:

$$\bigcirc \ \mathbf{x}(t) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^t$$

$$left$$
 $\mathbf{x}(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$

$$\bigcirc \mathbf{x}(t) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^t$$

$$\bigcirc \mathbf{x}(t) = \begin{pmatrix} -1 \\ -1 \end{pmatrix} e^t$$

Question 9

Not yet answered

Marked out of

 A particular solution of the differential equation $y^{\prime\prime}=24t^2$ is

Select one:

$$\bullet$$
 $Y(t) = 2t^4$

$$Y(t) = t^4 + 1$$

$$\bigcirc Y(t) = 3t^4$$

$$\bigcirc Y(t) = 4t^2$$

Clear my choice

Question 10

Not yet answered

Marked out of

⟨ Flag question |

The solution of the I.V.P. $x rac{dy}{dx} = y + y \ln \left(rac{y}{x}
ight)$, x>0 , y(1)=e is

Select one:

$$y = x \ln x$$

$$\bigcirc \ y = x^2 e^x$$

$$\bigcirc y = xe^{x^2}$$

Not yet answered

Marked out of

 The general solution of the differential equation $t^2y''+5ty'+4y=0$, t>0 is

Select one:

$$y(t) = c_1 t^{-1} + c_2 t^{-4}$$

$$y(t) = c_1 t^{-2} + c_2 t^{-2} \ln t$$

$$y(t) = c_1 t^2 + c_2 t^4$$

$$y(t) = c_1 e^{-t} + c_2 e^{-4t}$$

Clear my choice

Question 12

Not yet answered

Marked out of

♥ Flag

question

The Laplace transform of the solution of the initial value problem y''+ty'+y=0, y(0)=0, y'(0)=0 satisfies the equation

Select one:

$$\bigcirc 2Y(s) - sY'(s) = 0$$

$$\bigcirc Y(s) + Y'(s) = 0$$

$$\bigcirc Y(s) + sY'(s) = 0$$

Question 13

Not yet answered

Marked out of

 A certain object initially at 50° F is put into a 375° F oven. Using Newoton's law of heating

 $u'(t)=(\ln 5)(375-u(t))$, the temperature of the object at t=1 is

Select one:

- **375**°F
- **○** 310°F
- **365**°F
- **315**°F

Clear my choice

Question 14

Not yet answered

Marked out of 3

 The Laplace transform of the function

$$f(t) = \left\{egin{array}{ll} t & , & 0 \leq t < 1 \ 1 & , & t \geq 1 \end{array}
ight.$$
 is

Select one:

- $\bigcirc \frac{1+e^{-s}}{s}$
- $\bigcirc \ \, \frac{1}{s} + \frac{e^{-s}}{s^2}$
- $\bigcirc 1 + \frac{e^{-s}}{s}$

Question **15**

Not yet answered

Marked out of 3

 Let $y(x)=\sum_{n=0}^\infty a_nx^n$ be the series solution of the initial value problem $y''+(\cos x)y'+y=0$, y(0)=2 , y'(0)=1 , then $a_3=$

Select one:

- \bigcirc 2
- \bigcirc -1
- \odot $\frac{1}{2}$
- $\bigcirc \frac{1}{6}$

Clear my choice

Question 16

Not yet answered

Marked out of

♥ Flag

question

One of the following is a solution of the initial value problem $xyy^\prime=1$, y(1)=1

Select one:

$$\bigcirc \ \ y = \sqrt{\ln x^2 + 2}$$

$$y = \ln x + 1$$

$$\bigcirc y = \ln x^2 + 1$$

Not yet answered

Marked out of

 The Laplace transform of the function $f(t)=u_{rac{\pi}{2}}(t)\sin t$ is

Select one:

$$\bigcirc -rac{se^{-rac{\pi}{2}s}}{s^2+1}$$

$$\bigcirc \quad \frac{e^{-\frac{\pi}{2}s}}{s^2+1}$$

$$\bigcirc -\frac{e^{-\frac{\pi}{2}s}}{s^2+1}$$

Clear my choice

Question 18

Not yet answered

Marked out of

If
$$Y(t)=v_1(t)\cos t+v_2(t)\sin t$$
 is a particular solution of $y''+y=\sec t$, then $v_1\left(rac{\pi}{3}
ight)=$

Select one:

$$\bigcirc$$
 0

$$\bigcirc \frac{1}{2}$$

Not yet answered

Marked out of 3

 Let y(x) be the solution of the I.V.P. $(2xy+1)+(x^2+1)y'=0$, y(1)=1 , then y(3)=

Select one:

- \bigcirc 1
- \bigcirc 2
- 0
- \bigcirc 3

Clear my choice

Question 20

Not yet answered

Marked out of

♥ Flag

question

The solution of the I.V.P. $y''+y=(t-1)u_1(t)$, y(0)=0 , y'(0)=0 is

Select one:

- $((t-1) \sin(t-1))u_1(t)$
- $\bigcirc (t-\sin t)u_1(t)$
- $\bigcirc ((t-1) + \sin(t-1))u_1(t)$
- $\bigcirc \ (t-1) \sin(t-1)$

Not yet answered

Marked out of

♥ Flag
question

The differential equation $\left(x^2+y^2
ight)+2xyrac{dy}{dx}=0$ is

Select one:

- homogeneous and exact
- exact and separable
- separable and homogeneous
- linear and exact

Clear my choice

Question 22

Not yet answered

Marked out of

Flag question

The general form of a particular solution of $y^{\prime\prime\prime}-3y^{\prime\prime}+3y^{\prime}-y=te^t$ is

Select one:

$$\bigcirc Y(t) = (At^3 + Bt^2)e^t$$

$$\bigcirc Y(t) = (At + B)e^t$$

$$Y(t) = (At^4 + Bt^3)e^t$$

$$\bigcirc Y(t) = (At^2 + Bt)e^t$$

Question 23

Not yet answered

Marked out of

 The Laplace transform of $\int_0^t \sinh(t- au)\sin(au)d au$ is

Select one:

- $\bigcirc \frac{s}{(s^2+1)^2}$
- $\bigcirc \frac{s}{s^4-1}$
- $\bigcirc \frac{1}{(s^2+1)^2}$

Clear my choice

Question 24

Not yet answered

Marked out of

♥ Flag
question

The general solution of the differential equation $y^{(4)} - 8y'' + 16y = 0$ is

Select one:

$$y = c_1 e^{-2t} + c_2 e^{2t} + c_3 \sin(2t) + c_4 \cos(2t)$$

$$\bigcirc \ y = c_1 e^{2t} + c_2 t e^{2t} + c_3 t^2 e^{2t} + c_4 e^{-2t}$$

$$y = c_1 \cos(2t) + c_2 t \cos(2t) + c_3 \sin(2t) + c_4 t \sin(2t)$$

